Apr. 18, 2013 — When superstorm Sandy turned and took aim at New York City and Long Island last October, ocean waves hitting each other and the shore rattled the seafloor and much of the United States -- shaking detected by seismometers across the country, University of Utah researchers found.
"We detected seismic waves created by the oceans waves both hitting the East Coast and smashing into each other," with the most intense seismic activity recorded when Sandy turned toward Long Island, New York and New Jersey, says Keith Koper, director of the University of Utah Seismograph Stations.
"We were able to track the hurricane by looking at the 'microseisms' generated by Sandy," says Oner Sufri, a University of Utah geology and geophysics doctoral student and first author of the study with Koper. "As the storm turned west-northwest, the seismometers lit up."
Sufri was scheduled to present the preliminary, unpublished findings in Salt Lake City Thursday, April 18 during the Seismological Society of America's annual meeting.
![]()
This map, taken from a University of Utah video, shows colored dots to represent the locations of portable seismometers in the Earthscope array, which is funded by the National Science Foundation. Most are now located in the eastern part of the United States. Blue-green dots indicate low seismic activity, while yellow-orange-red dots indicate stronger seismic activity. The map shows that when superstorm Sandy turned west-northwest toward Long Island, New York City and New Jersey on Oct. 29, 2012, the seismometers “lit up” because of ground shaking by certain ocean waves imparting energy to the seafloor. (Credit: Keith Koper, University of Utah Seismograph Stations.)
more
http://www.sciencedaily.com/releases...0418213919.htm