There are a couple of very short videos at the site to demonstrate the effect.

From MedicalXpress:

(Medical Xpress)—How does San Francisco Giants slugger Pablo Sandoval swat a 95 mph fastball, or tennis icon Venus Williams see the oncoming ball, let alone return her sister Serena's 120 mph serves? For the first time, vision scientists at the University of California, Berkeley, have pinpointed how the brain tracks fast-moving objects.

The discovery advances our understanding of how humans predict the trajectory of moving objects when it can take one-tenth of a second for the brain to process what the eye sees. That 100-millisecond holdup means that in real time, a tennis ball moving at 120 mph would have already advanced 15 feet before the brain registers the ball's location. If our brains couldn't make up for this visual processing delay, we'd be constantly hit by balls, cars and more.

Thankfully, the brain "pushes" forward moving objects so we perceive them as further along in their trajectory than the eye can see, researchers said.

...

"The image that hits the eye and then is processed by the brain is not in sync with the real world, but the brain is clever enough to compensate for that," Maus said. "What we perceive doesn't necessarily have that much to do with the real world, but it is what we need to know to interact with the real world."